The Algorithms logo
The Algorithms
AboutDonate

Newton Raphson

C
D
R
W
g
P
s
C
and 5 more contributors
# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations

from decimal import Decimal
from math import *  # noqa: F403

from sympy import diff


def newton_raphson(
    func: str, a: float | Decimal, precision: float = 10**-10
) -> float:
    """Finds root from the point 'a' onwards by Newton-Raphson method
    >>> newton_raphson("sin(x)", 2)
    3.1415926536808043
    >>> newton_raphson("x**2 - 5*x +2", 0.4)
    0.4384471871911695
    >>> newton_raphson("x**2 - 5", 0.1)
    2.23606797749979
    >>> newton_raphson("log(x)- 1", 2)
    2.718281828458938
    """
    x = a
    while True:
        x = Decimal(x) - (
            Decimal(eval(func)) / Decimal(eval(str(diff(func))))  # noqa: S307
        )
        # This number dictates the accuracy of the answer
        if abs(eval(func)) < precision:  # noqa: S307
            return float(x)


# Let's Execute
if __name__ == "__main__":
    # Find root of trigonometric function
    # Find value of pi
    print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
    # Find root of polynomial
    print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
    # Find Square Root of 5
    print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
    # Exponential Roots
    print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")