"""
https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
"""
from __future__ import annotations
Path = list[tuple[int, int]]
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta = ([-1, 0], [0, -1], [1, 0], [0, 1])
class Node:
"""
>>> k = Node(0, 0, 4, 5, 0, None)
>>> k.calculate_heuristic()
9
>>> n = Node(1, 4, 3, 4, 2, None)
>>> n.calculate_heuristic()
2
>>> l = [k, n]
>>> n == l[0]
False
>>> l.sort()
>>> n == l[0]
True
"""
def __init__(
self,
pos_x: int,
pos_y: int,
goal_x: int,
goal_y: int,
g_cost: float,
parent: Node | None,
):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos = (pos_y, pos_x)
self.goal_x = goal_x
self.goal_y = goal_y
self.g_cost = g_cost
self.parent = parent
self.f_cost = self.calculate_heuristic()
def calculate_heuristic(self) -> float:
"""
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
dx = abs(self.pos_x - self.goal_x)
dy = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost
class GreedyBestFirst:
"""
>>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> [x.pos for x in gbf.get_successors(gbf.start)]
[(1, 0), (0, 1)]
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
(0, 1)
>>> (gbf.start.pos_y + delta[2][0], gbf.start.pos_x + delta[2][1])
(1, 0)
>>> gbf.retrace_path(gbf.start)
[(0, 0)]
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
(6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
self.open_nodes = [self.start]
self.closed_nodes: list[Node] = []
self.reached = False
def search(self) -> Path | None:
"""
Search for the path,
if a path is not found, only the starting position is returned
"""
while self.open_nodes:
self.open_nodes.sort()
current_node = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
self.reached = True
return self.retrace_path(current_node)
self.closed_nodes.append(current_node)
successors = self.get_successors(current_node)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not self.reached:
return [self.start.pos]
return None
def get_successors(self, parent: Node) -> list[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
)
return successors
def retrace_path(self, node: Node | None) -> Path:
"""
Retrace the path from parents to parents until start node
"""
current_node = node
path = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
current_node = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(init, goal)
path = greedy_bf.search()
if path:
for pos_x, pos_y in path:
grid[pos_x][pos_y] = 2
for elem in grid:
print(elem)